Correction: Palm-Vein Classification Based on Principal Orientation Features

نویسندگان

  • Yujia Zhou
  • Yaqin Liu
  • Qianjin Feng
  • Feng Yang
  • Jing Huang
  • Yixiao Nie
چکیده

Personal recognition using palm-vein patterns has emerged as a promising alternative for human recognition because of its uniqueness, stability, live body identification, flexibility, and difficulty to cheat. With the expanding application of palm-vein pattern recognition, the corresponding growth of the database has resulted in a long response time. To shorten the response time of identification, this paper proposes a simple and useful classification for palm-vein identification based on principal direction features. In the registration process, the Gaussian-Radon transform is adopted to extract the orientation matrix and then compute the principal direction of a palm-vein image based on the orientation matrix. The database can be classified into six bins based on the value of the principal direction. In the identification process, the principal direction of the test sample is first extracted to ascertain the corresponding bin. One-by-one matching with the training samples is then performed in the bin. To improve recognition efficiency while maintaining better recognition accuracy, two neighborhood bins of the corresponding bin are continuously searched to identify the input palm-vein image. Evaluation experiments are conducted on three different databases, namely, PolyU, CASIA, and the database of this study. Experimental results show that the searching range of one test sample in PolyU, CASIA and our database by the proposed method for palm-vein identification can be reduced to 14.29%, 14.50%, and 14.28%, with retrieval accuracy of 96.67%, 96.00%, and 97.71%, respectively. With 10,000 training samples in the database, the execution time of the identification process by the traditional method is 18.56 s, while that by the proposed approach is 3.16 s. The experimental results confirm that the proposed approach is more efficient than the traditional method, especially for a large database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Palm Vein Recognition Using LMKNCN Classification

This paper presents a novel approach to improve the recognition percentage of palm-vascular-based authentication systems presented in the literature. The proposed method efficiently accommodates the rotational, translational changes and potential deformations by encoding the orientation preserving features. The proposed palm-vein approach is compared with other existing methods and obtained an ...

متن کامل

Feature-level fusion of palmprint and palm vein for person identification based on a "Junction Point" representation

The issue of how to represent the palm features for effective classification is still an open problem. In this paper, we propose a novel palm representation, the “Junction Points” (JP) set, which is formed by the two set of line segments extracted from the registered palmprint and palm vein images respectively. Unlike the existing approaches, the JP set, containing position and orientation info...

متن کامل

Intelligent Techniques for Matching Palm Vein Images

The palm vein is one of the most reliable physiological characteristics that can be used to distinguish between individuals. Palm vein technology works by identifying the vein patterns in an individual's palm. The key techniques of palm vein recognition can systematically described in five parts extracting region of interest (ROI), preprocessing to image, extracting palm vein pattern, extractin...

متن کامل

Palmprint Recognition Based on Line and Slope Orientation Features

In the field of palmprint recognition, the orientation information of the principal lines and winkles has long been considered the most dominant and reliable feature. Numerous studies have tried to extract the line orientation information. Among them, the orientation based coding methods such as robust line orientation code (RLOC) and binary orientation co-occurrence vector (BOCV) showed highly...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014